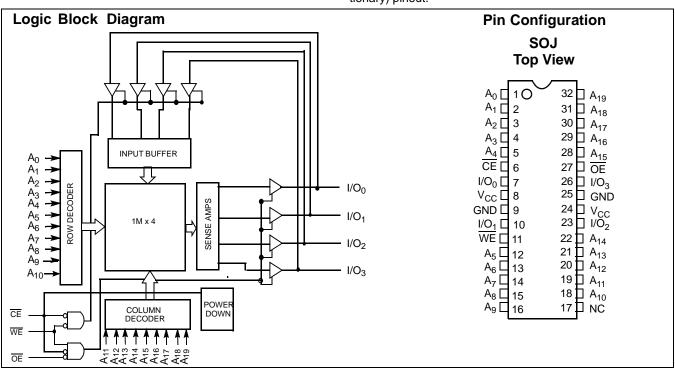


4-Mbit (1M x 4) Static RAM

Features

- Pin- and function-compatible with CY7C1046B
- High speed
 - $t_{AA} = 10 \text{ ns}$
- CMOS for optimum speed/power
- · Low active power
 - I_{CC} = 90 mA @ 10 ns
- Low CMOS Standby Power
 - $I_{SB2} = 10 \text{ mA}$
- Data Retention at 2.0 V
- · Automatic power-down when deselected
- · TTL-compatible inputs and outputs
- . Easy memory expansion with CE and OE features
- Available in lead-free 400-mil-wide 32-pin SOJ package


Functional Description[1]

The CY7C1046D is a high-performance CMOS static RAM organized as 1M words by 4 bits. Easy memory expansion is provided by an active LOW Chip Enable ($\overline{\text{CE}}$), an active LOW Output Enable ($\overline{\text{OE}}$), and tri-state drivers. Writing to the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the four I/O pins (I/O $_0$ through I/O $_3$) is then written into the location specified on the address pins (A_0 through A_{19}).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{OE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The four input/output pins (I/O₀ through I/O₃) are placed in a high-impedance state when the <u>device</u> is deselected (CE HIGH), the <u>outputs</u> are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1046D is available in a standard 400-mil-wide 32-pin SOJ package with center power and ground (revolutionary) pinout.

Selection Guide

	-10	Unit
Maximum Access Time	10	ns
Maximum Operating Current	90	mA
Maximum CMOS Standby Current (mA)	10	mA

Note:

^{1.} For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage on $\rm V_{CC}$ to Relative $\rm GND^{[2]}$ –0.5V to +6.0V DC Voltage Applied to Outputs in High Z State $^{[2]}$-0.5V to V_{CC} +0.5V DC Input Voltage^[2]-0.5V to V_{CC} +0.5V

Current into Outputs (LOW)	20 mA
Static Discharge Voltage	>2001V
(per MIL-STD-883, Method 3015)	
Latch-Up Current	. >200 mA

Operating Range

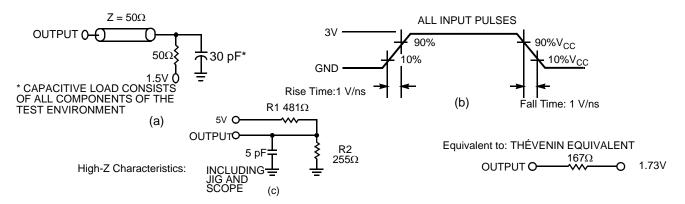
Range	Ambient Temperature	V _{CC}
Industrial	–40°C to +85°C	4.5V-5.5V

Electrical Characteristics Over the Operating Range

				-	10	
Parameter	Description	Test Condition	Min.	Max.	Unit	
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ m/s}$	A	2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0 \text{ mA}$			0.4	V
V _{IH}	Input HIGH Voltage			2.0	V _{CC} + 0.5	V
V _{IL}	Input LOW Voltage ^[2]			-0.5	0.8	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$		-1	+1	μΑ
I _{OZ}	Output Leakage Current	$\begin{array}{l} \text{GND} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{CC}}, \\ \text{Output Disabled} \end{array}$	–1	+1	μА	
I _{CC}	V _{CC} Operating	$V_{CC} = Max.,$ $f = f_{MAX} = 1/t_{RC}$	100 MHz		90	mA
	Supply Current		83 MHz		80	
			66 MHz		70	
		40 MHz			60	
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{aligned} &\text{Max. V}_{CC}, \overline{CE} \geq \text{V}_{IH} \\ &\text{V}_{IN} \geq \text{V}_{IH} \text{ or} \\ &\text{V}_{IN} \leq \text{V}_{IL}, f = f_{MAX} \end{aligned}$			20	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\begin{array}{l} \underline{\text{Max}}. \ V_{\text{CC}}, \\ CE \geq V_{\text{CC}} - 0.3V, \\ V_{\text{IN}} \geq V_{\text{CC}} - 0.3V, \\ \text{or } V_{\text{IN}} \leq 0.3V, f = 0 \end{array}$			10	mA

Capacitance^[3]

Parameter	Parameter Description Test Conditions		Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	I/O Capacitance	$V_{CC} = 5.0V$	8	pF


Thermal Resistance

Parameter	Description	Test Conditions	SOJ Package	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient) ^[3]	Still Air, soldered on a 3 x 4.5 inch, four-layer printed circuit board	53.44	°C/W
$\Theta_{\sf JC}$	Thermal Resistance (Junction to Case) ^[3]		38.25	°C/W

V_{IL} (min.) = -2.0V and V_{IH}(max) = V_{CC} +2V for pulse durations of less than 20 ns.
 Tested initially and after any design or process changes that may affect these parameters.

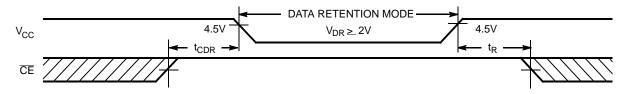
AC Test Loads and Waveforms [4]

Switching Characteristics^[5] Over the Operating Range

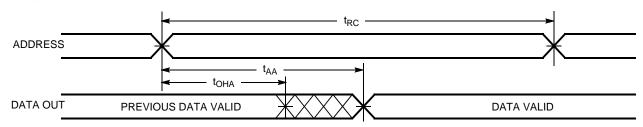
		7C104	l6D-10		
Parameter	Description	Min.	Max.	Unit	
Read Cycle		'	1		
t _{power}	V _{CC} (typical) to the first access ^[6]	100		μS	
t _{RC}	Read Cycle Time	10		ns	
t _{AA}	Address to Data Valid		10	ns	
t _{OHA}	Data Hold from Address Change	3		ns	
t _{ACE}	CE LOW to Data Valid		10	ns	
t _{DOE}	OE LOW to Data Valid		5	ns	
t _{LZOE}	OE LOW to Low Z ^[8]	0		ns	
t _{HZOE}	OE HIGH to High Z ^[7, 8]		5	ns	
t _{LZCE}	CE LOW to Low Z ^[8]	3		ns	
t _{HZCE}	CE HIGH to High Z ^[7, 8]		5	ns	
t _{PU}	CE LOW to Power-Up	0		ns	
t _{PD}	CE HIGH to Power-Down		10	ns	
Write Cycle ^[9, 10]		•			
t _{WC}	Write Cycle Time	10		ns	
t _{SCE}	CE LOW to Write End	7		ns	
t _{AW}	Address Set-Up to Write End	7		ns	
t _{HA}	Address Hold from Write End	0		ns	
t _{SA}	Address Set-Up to Write Start	0		ns	
t _{PWE}	WE Pulse Width	7		ns	
t _{SD}	Data Set-Up to Write End	6		ns	
t _{HD}	Data Hold from Write End	0		ns	
t _{LZWE}	WE HIGH to Low Z ^[8]	3		ns	
t _{HZWE}	WE LOW to High Z ^[7, 8]		5	ns	

- 4. AC characteristics (except High-Z) are tested using the load conditions shown in (a). High-Z characteristics are tested for all speeds using the test load shown in (c)
- 5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V.
- 6. tpOWER gives the minimum amount of time that the power supply should be at stable, typical VCC values until the first memory access can be performed. the three tables are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured when the outputs enter a high impedance state.
- 8. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.

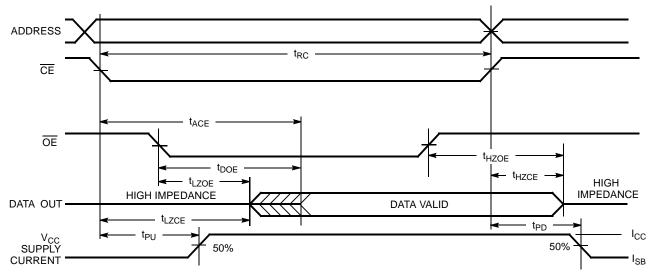
 9. The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.


 10. The minimum write cycle time for Write Cycle no. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

Data Retention Characteristics Over the Operating Range


Parameter	Description	Conditions ^[11]	Min.	Max.	Unit
V_{DR}	V _{CC} for Data Retention		2.0		V
I _{CCDR}	Data Retention Current	$V_{CC} = V_{DR} = 2.0V$		10	mA
t _{CDR} ^[3]	Chip Deselect to Data Retention Time	$\overrightarrow{CE} \ge V_{CC} - 0.3V$ $V_{IN} \ge V_{CC} - 0.3V$ or	0		ns
t _R ^[13]		V _{IN} ≤ 0.3V	t _{RC}		ns

Data Retention Waveform



Switching Waveforms

Read Cycle No. 1^[12, 14]

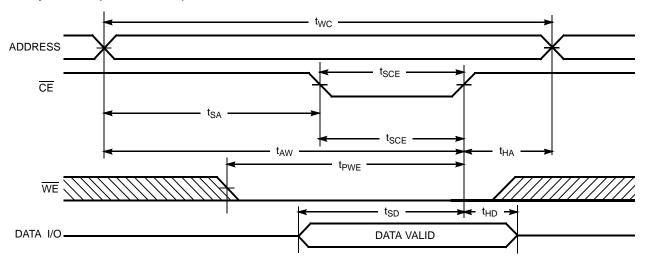
Read Cycle No. 2 (OE Controlled)[14, 15]

Notes:

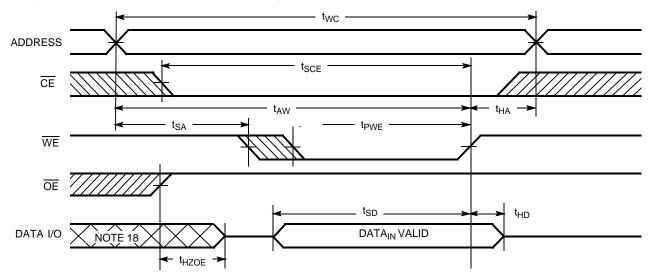
- Notes:

 11. No inputs may exceed V_{CC} + 0.3V

 12. Device is continuously selected. OE OE OE = V_{IL}.


 13. <u>Full</u> device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} ≥ 50 μs or stable at V_{CC(min.)} ≥ 50 μs
- 14. WE is HIGH for read cycle.

 15. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.



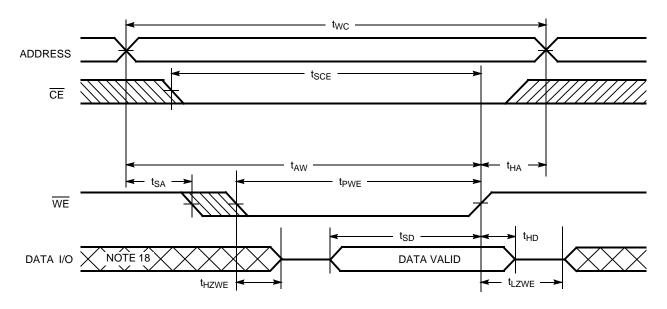
Switching Waveforms(continued)

Write Cycle No. 1 (CE Controlled)[16, 17]

Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[16, 17]

Notes:

16. Data I/O is high impedance if $\overline{\text{OE}} = \text{V}_{\text{IH}}$.


17. If $\overline{\text{CE}}$ goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

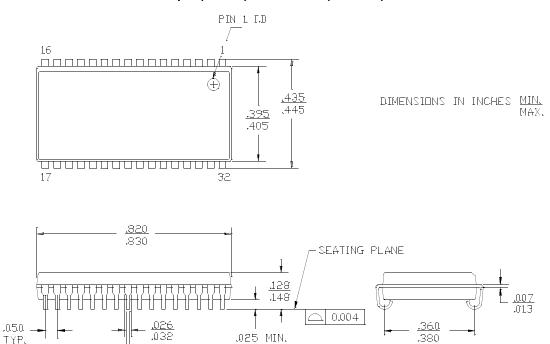
18. During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms(continued)

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)[17]

Truth Table

CE	OE	WE	I/O ₀ –I/O ₃	Mode	Power
Н	Х	Х	High-Z	Power-down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High-Z	Selected, Outputs Disabled	Active (I _{CC})


Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1046D-10VXI	51-85033	32-pin (400-Mil) Molded SOJ (Pb-Free)	Industrial

Please contact your local Cypress sales representative for availability of these parts.

Package Diagram

32-pin (400-Mil) Molded SOJ (51-85033)

All products and company names mentioned in this document may be the trademarks of their respective holders.

51-85033-*B

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	307613	See ECN	RKF	New Data Sheet
*A	399070	See ECN	NXR	Changed from Advance to Preliminary Changed address of Cypress Semiconductor Corporation on Page# 1 from "3901 North First Street" to "198 Champion Court" Removed -20 speed bin Removed L-Version Redefined I _{CC} values for Com'l and Ind'l temperature ranges I _{CC} (Com'l): Changed from 70 and 55 mA to 75 and 70 mA for 12 and 15 ns speed bins respectively I _{CC} (Ind'l): Changed from 80, 70 and 55 mA to 90, 85 and 80 mA for 10, 12 and 15 ns speed bins respectively Added Industrial Operating Range Changed reference voltage level for measurement of Hi-Z parameters from ±500 mV to ±200 mV Changed V _{CC} to 3 V in the Input pulse waveform at the AC Test Loads and Waveforms on page # 3 Changed t _{SCE} from 8 to 7 ns for -10 speed bin Added Truth Table Added 10 ns parts in the Ordering Information table Changed part names from V33 to V324 in the Ordering Information Table Shaded Ordering Information Table
*B	459072	See ECN	NXR	Converted from Preliminary to Final. Removed -12 and -15 Speed bins Removed Commercial Operating Range product information. Changed Maximum Rating for supply voltage from 7V to 6V Changed the Capacitance value of input pins and I/O pins from 6 pF to 8 pF Updated the Thermal Resistance table. Changed t _{HZWE} from 6 ns to 5 ns Added footnote #4 and 11 Updated footnote #7 on High-Z parameter measurement Updated the Ordering Information and replaced Package Name column with Package Diagram in the Ordering Information table.